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Back-Reaction Equations for Isotropic Cosmologies 
when Nonconformal Particles Are Created 
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A model proposed some years ago by Hattie to study the back reaction in a 
cosmological model due to the creation of massless non-conformally coupled 
particles is reexamined. The model consists of a spatially flat FRW spacetime 
with a classical source made of two perfect fluids one a radiative fluid and the 
other a baryonic fluid with the equation of state of dust, and it is assumed that 
the ratio of baryons to photons is small. The back-reaction equations for the 
cosmological scale factor are derived using a CTP (closed time path) effective 
action method. Making use of the connection, in the semiclassical context, between 
the CTP effective action and the influence functional in quantum statistical 
mechanics, improved back-reaction equations are derived which take into account 
the fluctuations of the stress-energy tensor of the quantum field. These new 
dynamical equations axe real and causal and predict stochastic fluctuations for 
the cosmological scale factor. 

1. I N T R O D U C T I O N  

The back reaction of quantum fields on the dynamics  of the very early 
universe could be very important. The study of quantum effects such as the 
creation of particles due to the universe expansion has a long history that 
goes back to the early work by Parker (1968, 1969) for homogeneous  and 
isotropic FRW (Fr iedmann-Rober t son-Walker )  cosmologies,  and to Zeldov- 
ich and Starobinsky (1971, 1977) (see also Birrell and Davies, 1980) for 

homogeneous but anisotropic cosmologies.  It was first argued by Zeldovich 
(1970) that the back reaction due to the creation of particles in anisotropic 
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models is a possible mechanism for the dissipation of the anisotropies in the 
early universe, and in fact it was soon shown that this could be the case 
(Lukash and Starobinsky, 1974; Lukash et al., 1976; Hu and Parker, 1978), 
provided one extrapolated the calculations to very early times. 

A systematic approach to the back-reaction problem in cosmology was 
initiated by Hartle (1977), who proposed to use the effective action to one- 
loop order to derive the semiclassical Einstein equations that describe the 
back reaction of the quantum fields on the dynamics of the gravitational 
field. This suggestion was followed by a study of the back-reaction problem 
for different cosmological scenarios such as conformally coupled fields in 
FRW (Fischetti et al., 1979) or conformally invariant fields in cosmologies 
with small anisotropies (Hartle and Hu, 1979, 1980a, b). As expected, in the 
models where conformal invariance was broken by the anisotropies particles 
were created and a rapid dissipation of these anisotropies took place very 
early in the universe. 

However, since the source of gravity in the semiclassical theory is the 
renormalized expectation value in some quantum state of the stress-energy 
momentum tensor of the quantum field, and this tensor contains terms qua- 
dratic in the spacetime curvature (as a consequence of the renormalization), 
the back-reaction effects on the classical geometry may be important even 
when there is no production of particles. We should recall that there is a two- 
parameter ambiguity in the expectation value of such a stress-energy tensor 
that cannot be resolved within the semiclassical theory (Birrell and Davies, 
1982; Wald, 1994); these parameters are related to two local tensors which 
are conserved and are quadratic in the curvature. In FRW cosmologies once 
these parameters are fixed, the equations for the cosmological scale factor 
admit a two-parameter family of solutions. 

Thus, Starobinsky (1980) showed that inflationary de Sitter models 
(Starobinsky inflation) which evolved into classical matter-dominated FRW 
cosmologies would be the consequence of the back reaction due to purely 
conformally coupled quantum fields. Detailed numerical calculations by 
Anderson ( 1983, 1984) showed that assuming FRW spacetimes which evolved 
into the future as classical solutions driven by classical radiation could have 
very different behaviors from the classical solution at early times just assuming 
the back reaction of  conformally coupled quantum fields. Some solutions 
start at an initial singularity and have no particle horizons, others avoid the 
singularity, whereas some start as contracting de Sitter universes and bounce 
once, while others bounce an infinite number of times and have initial singu- 
larities, but no particle horizons. In models where massive conformally cou- 
pled fields are considered, the calculations are more involved because there are 
nonlocal effects associated to particle creation, but the results are qualitatively 
similar (Anderson, 1985, 1986). The validity, however, of solutions to the 
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back-reaction equations that deviate nonperturbatively from the classical 
solutions has been questioned in recent years (Simon, 1991; Parker and 
Simon, 1993; Flanagan and Wald, 1996). 

An interesting model was proposed in 1981 by Hartle to study the back 
reaction of massless non-conformally coupled quantum fields in cosmology. 
The model is simple enough so that some results may be derived analytically 
and yet it has some of the features of a realistic cosmology. The model 
consists of a spatially fiat FRW spacetime with a classical source made of 
two perfect fluids, one of which has the equation of state of radiation and 
the other represents baryonic matter with the equation of state of dust. A 
dimensionless parameter ~ measuring the relative amounts of baryons and 
radiation, which is constant in classical periods, is assumed to be always 
constant and with a value corresponding to the present universe which is 
very small. A massless nonconformal field is coupled to this system. The 
presence of the small portion of baryonic matter is essential to ensure particle 
creation (a radiative FRW universe has a vanishing scalar curvature and the 
fields do not couple to the curvature). A perturbative expansion in terms of 
the parameter ~ is then seen to be equivalent to an expansion in a parameter 
that measures the deviation from the conformal coupling. 

Since the two degrees of freedom of the graviton field in an FRW 
background behave as massless minimally coupled fields (Grishchuk, 1974), 
Hartle's model provides a good testing ground for the study of the back 
reaction due to the creation of gravitons in cosmological models. In this 
model, of course, there is only one dynamical variable, the cosmological 
scale factor, which depends on time only. From the equations for this scale 
factor Hartle showed that solutions existed that evolved in time toward the 
classical FRW expansion for a universe with matter and radiation. However, 
at early times even when imposing that the departure from the classical 
solution is small (i.e., considering only the perturbative solutions), quantum 
effects near the initial singularity are important enough to soften the classical 
singularity in such a way that the rate of particle production is finite, whereas 
such a rate would be infinite if the back reaction of the quantum fields 
were ignored. 

Here we reconsider Hartle's model using a closed time path (CTP) 
effective action method to derive the dynamical equation for the scale factor. 
The advantage of this method over the "in--out" effective action method used 
by Hartle (1981) is that the dynamical equations are now real and causal. 
This makes the interpretation of the dynamical equations and their solutions 
much simpler and such equations can now be formulated as an initial value 
problem. The CTP effective action was first discussed by Schwinger (1961, 
1962) and Keldysh (1964). For an application of the CTP effective action 
method to the back-reaction problem in different cosmological models see 
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Jordan (1986, 1987), Calzetta and Hu (1987, 1989), Paz (1990), and Campos 
and Verdaguer (1994). 

The CTP formalism allows also to derive in a very natural way the 
stochastic effects that the quantum field induce on the cosmological scale 
factor. In fact, classical stochastic fluctuations in the gravitational field are 
predicted by the semiclassical Einstein-Langevin equations. These equations 
have been recently derived in different cosmological contexts as modifications 
to the semiclassical equations to account, to some extent, for the quantum 
fluctuations of the expectation value of the stress-energy tensor (Calzetta and 
Hu, 1995; Hu and Matacz, 1995; Hu and Sinha, 1995; Campos and Verdaguer, 
1996). Since these fluctuations are of quantum origin, we expect that they 
will be significant at the very early universe. 

An important step to derive the Langevin type of equations in the 
semiclassical back-reaction problem was made by Hu (1989), who proposed 
to view this problem in the light of quantum open systems. In fact, in the 
semiclassical context we have the interaction of two systems, one of  which 
is the gravitational field, and the other is the quantum field. Since only the 
dynamics of the first is of interest (the "system"), we can integrate out the 
degrees of freedom of the other system (the "environment"). All we need to 
know is the influence of the "environment" on the "system." A functional 
formalism developed by Feynman and Vernon (1963; Feynmann and Hibbs, 
1965), which is called the influence functional formalism, is already at hand 
for this. The influence functional formalism is closely related to the CTP 
functional formalism and it can be shown that the imaginary part of the CTP 
effective action contains the terms responsible for the stochastic fluctuations 
of the gravitational field. In all cases studied one has been able to prove a 
fluctuation-dissipation relation which connects the dissipation suffered by 
the gravitational field as a consequence of the production of quantum particles 
with the reaction by means of a stochastic source that the quantum field 
produces on the gravitational field. This is very much like the quantum 
Brownian motion of  a particle moving in a bath of quantum oscillators 
(Caldeira and Leggett, 1983). The influence functional method has been 
frequently used in recent years to derive Langevin-type equations in connec- 
tion with the study of out-of-equilibrium quantum systems in the early uni- 
verse (Morikawa, 1986; Lee and Boyanovsky, 1993; Gleiser and Ramos, 
1994; Boyanovsky et  al., 1995). 

The plan and a short summary of the paper are the following. In Section 
2 we describe Hartle's model and give the relevant terms for the action, 
which involves the quantum scalar field, the gravitational field, and the 
classical matter sources. In Section 3 we briefly summarize the calculations 
leading to the CTP effective action for the cosmological scale factor and 
give the final expression for such an effective action. In Section 4 we use 
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the previous results to give a fluctuation-dissipation relation in this case. We 
also use the relation between the CTP effective action and the influence 
functional of  Feynman and Vernon to derive an improved effective action 
for the cosmological scale factor which takes into account the fluctuations 
of the stress-energy tensor of the quantum field by including a coupling of 
the scale factor to a stochastic source. Finally, in Section 5 we derive the 
stochastic back-reaction equations from this improved effective action and 
compare our results with those by Hartle. We see that our equations are real 
and causal and that when the equations are averaged with respect to the 
stochastic source, they lead to the same behavior for small and large times 
as Hartle's equations. Now, however, there is a new stochastic term which 
predicts stochastic fluctuations for the cosmological scale factor; the detailed 
solutions in this case and the consequences of such stochastic behavior will 
be the subject of  further research. 

2. T H E  M O D E L  

In this section we describe Ha,lie 's (1981) model in which a massless 
nonconformal quantum scalar field is coupled to a spatially flat FRW cosmol- 
ogy with a classical source made of radiation and dust. Since we are interested 
in the effective action for the cosmological scale factor due to the quantum 
field, we need to add counterterms to the gravitational action to renormalize 
the effective action. We use a dimensional regularization technique and thus 
we write the relevant terms in the classical action in n arbitrary dimensions. 
The cosmological model is described by the n-dimensional spatially flat 
FRW metric 

ds 2 = a2(~)[--dTI 2 4- dx 2] (2.1) 

where a(rl) is the cosmological scale factor, and "q is the conformal time, 
which is related to cosmological time t by a drl = dt. The classical action 
for the massless scalar matter field ~ (x  ~') non-conformally coupled is 

1 n -  Sm[gv~, dP] : ---~ f d"x~/'-~[gr + (4-(n --2) + v)RCb 2] (2.2) 

where R is the Ricci curvature scalar, and (n - 2)/4(n - 1) + v is the 
parameter coupling of the scalar field to the spacetime curvature; v = 0 
corresponds to a conformally coupled field in n dimensions. Since the metric 
(2.1) is conformally flat, it is convenient to introduce a new rescaled matter 
field +(x ~) by 

+(x ~) --- a~"-2v~(~q)@(x ~) (2.3) 



2530 Campos and Verdaguer 

and the scalar field action simplifies considerably, 

if Sin[a, +] = -~ dnx dp(x~ -- va2R]~b(x p') (2.4) 

where now [] = "q~0~0~ is the flat d'Alambertian operator. It is clear from 
this equation that if v 4: 0, the conformally flat symmetry is broken by the 
coupling of the scalar field. 

As we have mentioned, the action for the gravitational field, the Einstein- 
Hilbert action, needs to be corrected with a counterterm to cancel the diver- 
gences that will come from the effective action. In our case it suffices to add 
a term quadratic in the Ricci scalar. Note that terms quadratic in R~, or the 
Weyl tensor could also be added, but since these terms are not necessary for 
the renormalization, we simply assume that their coefficients vanish. This is 
related to the two-parameter ambiguity in the renormalized expectation value 
of the stress-energy tensor of the quantum field (Birrell and Davies, 1982; 
Wald, 1994) that we have already mentioned; nevertheless, we will see that 
part of such ambiguity remains here. Thus the Einstein-Hilbert action plus 
the divergent (in n = 4) counterterms are 

V2 ~'Ln- 4 f d"x'f'L-gRZ 
Sg[a; ~c] = ~ f d"x, /~R + 32w-~ = 4) (2.5) 

where Ip = (16vG) 1/2 is the Planck length and ~c is an arbitrary mass scale 
needed to give the correct dimensions to the counterterm. Since the only 
gravitational variable is the cosmological scale factor a(rl), the above equation 
reduces in our case, when expanded in (n - 4), to 

sEH[a] 6~ f = l--~- dxl a// (2.6) 

S~ivr _ v2~ [ 36 f (~)  2 f (~)z g ta;~c] 32,rr2 ~ d'q + 3 6 1 n ~ r  dr I 

+ 1 2  f d-q I3  In a ( ~ ) 2 +  ( ~ ) [ 3  ( ~ ) z + 2  ( ~ ) ] } ]  

+ O(n - 4) (2.7) 

where ~ff is the volume integral ~ = f d3x and we have separated the 
Einstein-Hilbert action from the divergent term. 
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To the above scalar and gravitational actions we need to add the action 
for the classical matter sources S~, which are radiative and dust perfect fluids. 
This action is given by 

~ [ a ]  = -~V f d'q O~a (2.8) 

where ~b is a constant parameter related to the baryon energy density. It is 
connected to a similar parameter 15r for the energy density of the radiation 
through 

1~3, 4 (2.9) 

which is of order of ~ -- 10 -27 for the present universe. This parameter 
measures the ratio of  baryons to photons. 

The action (2.8) is justified because it reproduces the trace of the stress- 
energy tensor for a radiative perfect fluid with equation of state p,  = p J3, 
where Pr is the pressure and Pr is the energy density of the radiation, and of 
dust-like baryon fluid of pressure Pb and energy density Pb with an equation 
of state Pb = 0, when varied with respect to the scale factor a('q). When the 
dynamics of the scale factor is driven by the classical source only, one finds 
that ph = 0t, a -3 and p, = pr a - 4  and then the relative amounts of  baryons 
and radiation are defined by/ppb/p~/4 becoming constant and given by (2.9). 
In fact, when the classical action (2.8) is considered as the only dynamical 
source of gravity from the Einstein-Hilbert action (2.6) one gets 6d = 
(IpZ/2)0b or equivalently R = -(l~/2)T el, where Tct = -Oh is the trace of  the 
stress-energy tensor of  a perfect fluid of dust (baryons) and radiation. 

We note that when baryons are not present, i.e., when ~ = 0, the scalar 
curvature (R = 0), and from the action (2.4) for the scalar field ~b(x ~) it is 
clear that this field behaves as a free field in flat spacetime. Therefore with 
the usual Minkowskian definition of a vacuum state [which corresponds to 
the conformal vacuum for ~(xr no particles can be created by the universe 
expansion. Back-reaction effects are still possible due to the vacuum expecta- 
tion value of the stress-energy tensor of the scalar field, which in this case 
is formed by terms purely quadratic in the curvature and which depend on 
the two parameters of the above-mentioned parameter ambiguity. One of the 
parameters is associated with an action proportional to R 2 and the other with 
an action proportional to R~,~R'". The first vanishes when R = 0, but the 
second is generally different from zero even when the scalar curvature van- 
ishes. Thus all quantum effects in this case depend crucially on the second 
parameter being different from zero. We will assume that that such parameter 
is zero and then R = 0 is a consistent solution to the semiclassical back- 
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reaction problem. Since our interest is in the back reaction due to particle 
production, we will take ~ as a small nonzero parameter, and we will consider 
the va2R term in (2.4) as a perturbative term which gives a measure of  the 
deviation from the radiative case R = 0. In practice we will compute the 
quantum corrections as perturbations in powers of the parameter v, and this 
should be consistent with an expansion in ~. 

3. CTP E F F E C T I V E  ACTION 

In this section we compute the closed time path (CTP) effective action 
to one-loop order for our massless quantum field qb(x~) using a perturbative 
expansion in powers of the parameter v. The CTP effective action was 
introduced by Schwinger (1961, 1962; Keldysh, 1964; Chou et al., 1985). 
For its application in a curved background see Jordan (1986, 1987), Calzetta 
and Hu (1987, 1989), Paz (1990), and Campos and Verdaguer (1994), and 
for the details in this paper we closely follow Campos and Verdaguer (1994). 

The idea is to start with a generating functional from which one may 
obtain expectation values, instead of matrix elements, as one obtains using 
the generating functional of the ordinary in-out effective action technique. 
For this one lets a certain in-vacuum evolve independently under two different 
external classical sources J+ and J_. In terms of a certain general field ~(x) 
one can give a path integral representation of such a generating functional as 

eiW[y+'Y-I = I ~[~§ ~[t~-]ei~S['O+l-S[~-l+Y+++-Y-~-) 
I 

(3.1) 

where S[t~] is the action for the field ~, J+_++_ =- f d"x J+_(x)t~+_(x), and it is 
understood that we sum over all fields ~+ and +_ with negative and positive 
frequency modes, respectively, in the remote past, but which coincide at 
some future time (usually at t --* +~) .  It is easy to see that expectation values 
are obtained from this generating functional. This formalism is called CTP 
because the above path integral can be seen as the path sum of one field 
evolving in two different time branches: one going forward in time in the 
presence of J§ and then backward in time in the presence of J_ from the 
future to the in-vacuum. 

The CTP effective action is the Legendre transform of this functional 

Fern[q,+, ~- I  = WIJ+, J_] - J+~+ + J_~_ (3.2) 

where the field ~ is defined by ~• = 4-(SW/gJ+). The dynamical equation 
for the vacuum expectation value of the field ~[0] --- ~+_[0] = (0, inl~(x)10, 
in) is simply obtained as 

~FCTp[t'I/+' tl/-] ~+=~[o1 
_ : 0 ( 3 . 3 )  



Back-Reaction Equations for Isotropic Cosmologies 2533 

In our case we have two fields a('q) and +(x r whose free actions 
are given by Sg[a; ~c] + SClm[ a] from (2.6)-(2.8), and by S~er = 
1/2 f dnx +[]+ from (2.4), and whose interaction action is given b y  
Si,t[a, qb] = - v / 2  f d"x a2Rqb z. Thus the generic field ~ above must be seen 
now as two fields, but since we work in the semiclassical approximation we 
will only quantize the scalar field +, whereas a will be considered as a 
classical field. 

Thus we can proceed to the evaluation of the effective action up to one- 
loop order for the field ~, which corresponds to the first-order expansion of 
the generating functional in powers of h. As usual (Abers and Lee, 1973) 
we take +(+0) as the classical solutions and expand the exponent in (3.1) about 
these background fields up to the second derivative of Sin[+• with respect 
to +~; then the integration in +_. is Gaussian. Let G(x, y) be the propagator, 
i.e., the inverse of the classical kinetic operator A = diag(O - va*2R +, 
- ( o  - va-ZR-));  see (2.4). We should note that since we have two fields 
4,+ and ~b , G is a matrix operator with 2 X 2 components. Thus we get 
W[J~-] = W(~ - (i/2)Tr(ln G), where W ~~ represents the classical action 
with external sources, and from this, by explicit evaluation of the Legendre 
transform to the same order, we obtain the CTP effective action as 

FcTv[a"-, ~ - ]  -- Sg[a+; I~c] - Sg[a-; ~c] + S,~,~[a +] - S~[a-] 

- -  - -  i 

+ Sm[a +, qb+] - S,,[a-, qb_] - ~ Tr(ln G) (3.4) 

Since the action (2.4) is quadratic in the field, the one-loop-order result 
(3.4) is exact in this case. However, the propagator G cannot be found exactly, 
because of the interaction term in (2.4), and thus we expand G in powers of 
v. Let us define 

V(a) ~ - v a 2 R  (3.5) 

Then up to second order in v, G = G~ - VG ~ + VG~ ~ + "--], where 
G ~ is the flat spacetime propagator (GO) - ~ = diag(n, - n ) ;  its four components 
are G~ = AF, G~ = --AD, G~-- = --A +, and GO_+ = A- where AF and 
A~ are the Feynman and Dyson propagators, respectively, and A ~ are the 
Wightman functions. Substituting the above expansion in (3.4), we have up 
to second order in v 

Fczp[ a-+, ~_] - - - -  Sg[ a+, ~c] - Sg[a-; I~,.] + S~[a +] - S~,~,[a -] 

+ S,,[a +, ~+] - Sm[a-,-~-1 

- --/Tr(In2 G%) + 2Tr(V+G'~+) - Tr (V_G"_)  
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_ i Tr(V+GO++V+GO++) _ i T r ( V _ G ~ 1 7 6  
4 4 

i Tr( V+G~ ~ +) (3.6) 

This effective action depends on the fields ~_+ and the scale factor a -+. The 
dynamical equation for the field qb(x) may be obtained by functional derivation 
with respect to qb+ as explained in (3.3), and it is clear from (3.6) that the 
vacuum expectation value + = (0, inl(bl0, in) = 0. Since our main interest 
is the dynamical  equation for a('q), we can substitute the above expression 
in the effective action and we obtain an effective action which is a functional 
o f  a -  only, i.e., Fcvp[a=] of  (3.6). As explained in more detail in Campos 
and Verdaguer (1994), we only need to evaluate the last three terms because 
the rest do not contribute to the dynamical equations for a('q). These terms are 

i 
T -+ = - -  T r ( V . G  ~ V.-G~ +_) 

4 

_T_ v2 ~-36 W. ( ~ ) 2  
= 32"rrZ[n - 4 f drl 

+ 12W" 

//_. dz 2 d-* 

- 3 6  ( ' q ' ) + O ( n - 4 )  (3.7) 

i 
T = z Tr( V+ G~ _ V_ G ~ +) 

Z 

4,rr 2 dxl d'q' ~ ('q)K(x I - "q') ( 'q') + O(n - 4) (3.8) 

where p.o z = exp(2 + In 4w - "y) and 

K~-(xl - "q'; 12.o) = 16"rr2[A(rl - rl ' ;  IXo) -+ iN('q - "q')] 

K('q - "q') = -16"rr2[D('q - "q') + iN(rl - "q')] (3.9) 

with 

9 

A(~q - "q'; p~,,) = 32rr 2 e -ip~ In 

t W ' f ~ d p "  D(~q - ~q') = ~ - ~  e - ip '~-~ '~  sgn ( -p" )  
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~V 
N(TI -- "q') = ~ 8(xl -- TI') (3.10) 

The two kernels K+-(xl - TI'; IXo) come from the evaluation of [AF/D(X -- X')] 2, 
and K(~q - "q') comes from the evaluation of [A+(x - x')] 2, which appear 
in (3.7) and (3.8), respectively, followed by space integrations. 

The divergent terms when n --* 4 of (3.7) are canceled by the terms 
quadratic in the curvature introduced in the gravitational part of the action 
Sg[a=; txc]. Finally, the renormalized CTP effective action is 

Fc, Tp[a +-] - -  S ~ m [ a  + ] - S~,,,,[a-] + S~F[a z ] (3.1 1) 

where 

and 

f 9u2 In ffba SR.,[al = ~ d'q - ~  d 2 + 8.rr---- 5 a - (3.12) 

_ 1 f d~ d-~' AV('~)H(TI - sRF[ a=] 32.rr2 
-q'; ~){v(-q')} 

(o~ dxl ( .  d'q' AV(~q)N0] - "q')AV('q') (3.13) + i 
. ] - ~  y -  o o  

where ~ = P.ol-~r we have used the notation AV(-q) = V§ - V_('q), 
{V('q)} = V+('q) + V_(~q), with V('q) = 6v(a/a), and the new kernel H0q 
- -q'; -~) is 

H(TI -- rl'; g)  = 16"rr2[A(xl -- rl'; ~) -- D(TI -- rl')] (3.14) 

The subscript IF in SR[a *-] is used to indicate that this part of the CTP 
action is the influence functional action as defined by Feynman and Vernon 
(1963). That is, it gives the effect of the "environment," the quantum field, 
on the "system," the cosmological scale factor, which is the field of interest 
here. The identification between a part of the CTP effective action and the 
influence functional was proved by Calzetta and Hu (1994). 

4. I M P R O V E D  E F F E C T I V E  A C T I O N  

The connection between the CTP effective action in the semiclassical 
context and the influence functional action introduced by Feynman and Ver- 
non to describe the interaction between a "system" and an "environment" 
just noted gives an interesting new light on the semiclassical back-reaction 
problem, as first noted by Hu (1989). 
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4.1.  F luc tua t i o n -Di s s i pa t i o n  Re la t ion  

In analogy with the quantum Brownian model (Hu et al., 1993), a 
fluctuation-dissipation relation can be derived in this case~ In fact, we can 
identify the noise kernel as the kernel N('q - "q') of  the imaginary part of  
the influence functional action (3.13), Im(S~F), which is quadratic in the field 
difference AV = V+ - V_. To identify the dissipation kernel, it is convenient  
to write the real part of  the influence functional as follows: 

a + 1 
Re(S,F[a-]) = 3-~w 2 d d'q d'q' [V+('q)V+('q') - V_('q)V_('q')J'~('r I - -q'; g )  

-Ldnf~d.n'av~n)D(n-n'){v(n')} (4.1) 

where 

T(~I - xl'; ~ )  = 16~r2 [A0q - "q'; ~)  + D('q - ~q') sgn(r I - "q')] 

i.e., we have separated the kernel H(-q - rl ' ;  ~ )  into its symmetric and 
antisymmetric parts in the interchange of  xl by rl'. 

The second term in (4.1) is written now in the standard form (Feynman 
and Vernon, 1963; Feynman and Hibbs, 1965) to identify D(T I -- "q') as the 
dissipation kernel. This term is not symmetric under the change of  temporal 
order. The explicit fluctuation-dissipation relation may be derived as follows. 
First we note that D(TI) may be written as a time derivative 

D(~) - -~ -~V(~)  (4.2) 

where 

( ~  dP~ e-ip~ 
3~('q) - ~ . - _  2w Ip~ (4.3) 

where 1/Ip~ must be understood as its Hadamard 's  finite part distribution 
(Campos and Verdaguer, 1996). Then the fluctuation-dissipation relation takes 
the form 

N('q) = f~= dTl' KVD(X 1 -- ~q')~/(rl' ) (4.4) 

where the fluctuation-dissipation kernel K ~ ( r  I - "q') is given by the 
distribution 

KFD(~I) = ~ e-iP"'nlp~ (4.5) 
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as can be easily checked. This relation connects the effect of the quantum 
fluctuations of the "environment," which are represented by the noise kernel 
N, with the dissipation on the scale factor a('q) as a consequence of the 
quantum particle creation (Calzetta and Hu, 1994). 

4.2. Improved Effective Action 

Let us now turn to the evaluation of the back-reaction equations, that 
is, the dynamical equations for the scalar field a('q). In principle these 
equations can be derived from the CTP effective action using (3.3), i.e., 
~Fc-rp/~a+l . . . .  = 0, for the fields aZ(xl) (which are classical fields), using 
the Fc-rp of (3.11) derived in the previous section. A problem might arise 
from the fact that this effective action has an imaginary part, since S~ is 
complex; see (3.13). It should be clear, however, that the imaginary part of 
S~: will not contribute to the field equation derived in that form because 
Im(S~[a -~ ]) is quadratic in the difference AV(a) = V+(a § - V _ ( a - ) .  

However, as we pointed out in the previous section, from the point of 
view of the system-environment relation the imaginary part of the influence 
action is related to the noise suffered by the system from the environment 
fluctuations. Thus we can improve the semiclassical back-reaction equations 
by taking into account such fluctuations. This may be formally achieved if 
we define the influence functional (Feynman and Vernon, 1963) 

~lF[a z ] = eis~F[a• 

and note that it may be written as 

~rF[a:l=f~,~'[~lexp{i[Re(SRtF[a~-])+ 
where 

f d-q ~(~)AV(n)]} 

(4.6) 

(4.7) 

and we have used only a simple path-integral Gaussian identity. That is, 
performing the path integral in (4.7) with ~[~] defined in (4.8) leads directly 
to (4.6). If we interpret ~'[~] as a Gaussian probability distribution for the 
field ~(~), where the kernel N('q - ",1') plays the role of noise, the action in 
(4.7) may be seen formally as the action for a field a(~q) which is coupled 
to an external stochastic source ~(xl) (Feynman and Vernon, 1963; Feynman 
and Hibbs, t965). 

~[~] = (4.8) 



2538 Campos and Verdaguer 

The influence functional (4.6) can be seen as the mean value with respect 
to the stochastic field ~('q) of an influence functional for an improved effective 
action S~ff defined by 

se,da S~.m[a I - S~.m[a-] + Re(SIF[a-D + drl ~01)AV(rl) (4.9) 

This comes from (4.7) and the addition of the gravitational and classical 
matter terms (3.12). Now the field ~('q) will act as a stochastic source in the 
improved semiclassical equation when the functional derivation with respect 
to a+(rl) is taken. This stochastic field is not dynamical; it is completely 
defined by the following relations, which may be derived from the characteris- 
tic functional, i.e., the functional Fourier transform of ~[~]: 

<~('n)>~ = 0 

(~('q)~(Xl')) ~ = N('q - xl') (4.10) 

Since the probability distribution is Gaussian, the noise kernel is the two- 
point correlation function of the stochastic field. In our case, as one can see 
from (3.10), the noise is white. 

Before proceeding to the derivation of the improved semiclassical equa- 
tions it is convenient for comparison with previous work (Hartle, 1981; 
Anderson, 1983, 1984) to write the effective action (4.9) in terms of dimen- 
sionless quantities such as X, b(x), and ~(X) for the conformal time -q, cosmo- 
logical scale factor a('q), and stochastic source ~(rl), respectively. These are 
defined by 

Or TM a 0::4 
x = ~-~. ~, b - gOr'" ' ~ = ~ (4.11) 

We also introduce dimensionless frequencies co, renormalization parameter 
/,i, and volume ~ instead of pO, ~, oV, ' respectively, as 

6 : -  1~314 
co = -~-~/4 p ~ ~ = 61alp-~, ~ = ~ i ; ~  (4.12) 

Thus the improved effective action (4.9) for the dimensionless scale field 
b(x) is 

Serf[b*-; ~] =-- ~6'/203r ̀ 4 ~ dx {-A(/ ;  z + ~b)(• 
d 
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The nonlocal operator K is defined by its action on a general function f (x )  by 

--- f dx' h(x - X'; 13,)f(x') (4.14) K[X~ f(x)]  

where the kernel H in (3.14) is now reduced to 

h(• - X'; 0~) -= ~ e - " ( x  - • In - -  + - -  sgn(-~0) (4.15) 
g 2 

i.e., it is the Fourier transform of [ln(l~l/~) + (iTd2)sgn(--~o)]. On the other 
hand, the stochastic source ~(X) is defined from (4.10) by 

(~(X){(X'))~ = 192----~ 8(x - X') (4.16) 

5. BACK-REACTION EQUATIONS 

We are now ready to derive the dynamical equations for the cosmological 
scale factor in its dimensionless form b(x) by functional derivation of the 
effective action (4.13) as 

~b + (S~ff[b-+; ~]) ~ 0 (5.1) 
b.=b 

After functional derivation and the identification of the plus and minus fields, 
the equation acquires an interesting form if we multiply it by b. The final 
form is 

.{ .iv2[ l[ / ~ 2 - ~ b - 3 - ~ 2 1 n b  +bdxx  ~ l n b  - ~ K  X; 

A few comments are now in order. First, the equation is a stochastic 
equation, given that the field ~(X) is stochastic, but if we take its mean 
value with respect to that field ~, the equation reduces to the more familiar 
semiclassical equation without the stochastic source. This stochastic semiclas- 
sical equation describes the dynamics of the cosmological scale factor when 
it is driven by a classical source of radiation and dust fluids [this is the origin 
of the first two terms in (5.2)], and it is coupled to a massless nonconformal 
field. The effects of the quantum field are those proportional to the coupling 
parameter v. The terms with In b come from the renormalization of the stress- 
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energy momentum of the quantum field [see (2.7)] and then there are nonlocal 
contributions represented by K[X; b/b]. The effect due to the production of 
quantum particles, in particular the dissipation of the field b(• due to such 
particle creation, is included in these nonlocal terms. The fluctuation-dissipa- 
tion relation derived in (4.4) suggests, in fact, that these dissipative effects 
are to be found in the terms involving the kernel D(r I - rl'), which is only 
a part of the kernel H(x I - ~q'; g)  in (3.14), or, equivalently, of h(• -- X'; 
~) in (4.15). Nonlocal terms do not appear when there is no particle produc- 
tion; see, for instance, (Anderson, 1983, 1984, 1985, 1986). 

Equation (5.2) is real and causal; this is clearly seen if we explicitly 
compute the Fourier transform in the definition (4.15) of the kernel h(x - 

X'; 0,): 

I O(XSX-")+('y+Ing)8(X-X')] (5.3) h(x - X ' ; IZ)  = - Pf X -  X 

where 3' is the Euler constant and Pf means the Hadamard finite part. It is 
clear that due to the 0(X - X') term in (5.3), when this is substituted into 
the nonlocal operator K[X; f(x)], the integration in (4.14) is restricted to 
X' < X; thus (5.2) is manifestly real and causal. Note that this is in fact the 
main difference between the CTP approach and Hartle's approach. Compare, 
for instance, (4.14) with the corresponding nonlocal operator (2.23) in Hartle 
(1981), which includes integration on all values of X', i.e., to the future of 
X also. The equation has derivatives higher than two in the terms of quantum 
origin. This is a well-known fact in the semiclassical context and it is rather 
common in back-reaction problems. The high derivative terms are responsible 
for spurious solutions; to eliminate such solutions, reduction of order methods 
have been suggested (Simon, 1991; Parker and Simon, 1993; Flanagan and 
Wald, 1996). The methods are neat when one deals with local equations, but 
when nonlocal equations are involved, as in our case, special care must be 
taken since there might be some ambiguity if integration by parts is made. 

When quantum effects are ignored, i.e., when we take v --- 0 in the 
back-reaction equation, it becomes 2b - ~ = 0, which is the classical equation 
when only the two classical fluids are present and admits the classical solution 

I 
b = X + ~ X  2 (5.4) 

with appropriate initial conditions. When baryonic matter is not present, i.e., 
= 0, the classical solution is b = X, and it is interesting to note that (5.2), 

when it is averaged with respect to /~(X) also admits b = X as a solution, 
which is in agreement with Hartle's solution. As remarked in the introduction, 
this is expected, as in such a case no particle creation is produced. Had we 
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introduced local terms in the action of the type R~,R wv (these are related to 
the previously described parameter ambiguity), this would not necessarily 
be the case. 

The analytic solution of the stochastic integrodifferential equation (5.2) 
is not possible, but since ~, the parameter that gives the baryon-to-photon 
ratio, is assumed to be very small, it makes sense to find solutions linearized 
around a radiative universe. Thus we follow Hartle (1981) and look for 
solutions of the type 

b(x) = X + ~g,(X) (5.5) 

Substituting this into (5.2), taking only terms linear in ~, the equation can 
be integrated twice and becomes 

g +  3-~2X l n X X - K  X; + - ~  =--~+AoX+Bo (5.6) 

where Ao and Bo are integration constants which may be taken to vanish. 
The term X2/4 gives the expansion corresponding to a matter universe and 
comes from the second term in (5.2). The terms with v are of quantum origin. 
Equation (5.6) is the dynamical equation for the perturbation g(x) of the 
scale factor around a radiative classical solution. 

This equation can now be directly compared with (3.9) in Hartle (1981). 
In our case we have the external stochastic source ~ that accounts for the 
fluctuations of the quantum stress-energy tensor, which was not considered 
previously, but if we take the mean value with respect of ~, the resulting 
equation should be comparable with Hartle's equation. The main difference 
here, as we pointed out earlier, is that the equation is real and causal. But 
the basic structure of the equation is similar and the conclusions that Hartle 
draws in his analysis are essentially the same here. 

Thus, ignoring the stochastic term ~(X), we can conclude the following. 
For large-• behavior, g - X2/4 + O(ln •215 is a self-consistent solution of 
equation (5.6). For small values of • one finds that a solution g -- gl• + 
O(• where e > 0 is also consistent with the equation. This guaranties 
the convergence of the integral in K[• g/x] and is in agreement with the 
assumption that near the classical singularity the perturbation is small. This 
is imposed by requiring that g'(0) = 0, which is consistent with the assumption 
that the back reaction is only due to the creation of particles. In fact, in this 
case the universe starts classical, then creates quantum particles, and it is the 
back reaction of these quantum effects that we are considering. 

The inclusion of the stochastic source in the equation is new and repre- 
sents an improvement over the previous semiclassical analysis. From the 
fluctuation-dissipation relation one expects now that there should be an equi- 
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l ibr ium between the diss ipat ive effects due to part icle  creation and the s tochas-  
tic source due to the quantum fluctuation of  the environment  in a way s imi lar  
to what  happens  in the Brownian  motion.  The deta i led study of  the resul t ing 
stochastic behavior  of  the conformal  scale factor descr ibed  by (5.6) is made  
by Calzet ta  et al. (1997). 
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